Aqueous synthesis of highly functional, hydrophobic, and chemically recyclable cellulose nanomaterials through oxime ligation.

阅读:3
作者:Subbotina Elena, Ram Farsa, Dvinskikh Sergey V, Berglund Lars A, Olsén Peter
Cellulose nanofibril (CNF) materials are candidates for the sustainable development of high mechanical performance nanomaterials. Due to inherent hydrophilicity and limited functionality range, most applications require chemical modification of CNF. However, targeted transformations directly on CNF are cumbersome due to the propensity of CNF to aggregate in non-aqueous solvents at high concentrations, complicating the choice of suitable reagents and requiring tedious separations of the final product. This work addresses this challenge by developing a general, entirely water-based, and experimentally simple methodology for functionalizing CNF, providing aliphatic, allylic, propargylic, azobenzylic, and substituted benzylic functional groups. The first step is NaIO(4) oxidation to dialdehyde-CNF in the wet cake state, followed by oxime ligation with O-substituted hydroxylamines. The increased hydrolytic stability of oximes removes the need for reductive stabilization as often required for the analogous imines where aldehyde groups react with amines in water. Overall, the process provides a tailored degree of nanofibril functionalization (2-4.5 mmol/g) with the possible reversible detachment of the functionality under mildly acidic conditions, resulting in the reformation of dialdehyde CNF. The modified CNF materials were assessed for potential applications in green electronics and triboelectric nanogenerators.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。