High-performance bulk graphite (HPBG) that simultaneously integrates superior electrical conductivity and excellent strength is in high demand, yet it remains critical and challenging. Herein a novel approach is introduced utilizing MOF-derived nanoporous metal/carbon composites as precursors to circumvent this traditional trade-off. The resulting bulk graphite, composed of densely packed multilayered graphene sheets functionalized with diverse cobalt forms (nanoparticles, single atoms, and clusters), exhibits unprecedented electrical conductivity in all directions (in-plane: 7311 S cmâ»Â¹, out-of-plane: 5541 S cmâ»Â¹) and excellent mechanical strength (flexural: 101.17±5.73 MPa, compressive: 151.56±2.53 MPa). Co nanoparticles act as autocatalysts and binders, promoting strong interlayer adhesion among highly graphitized graphene layers via spark plasma sintering. The strong nano-interfaces between graphite and Co-create critical bridges between graphene nanosheets, facilitating highly efficient electron migration and enhanced strength and stiffness of the assembled bulk nanocomposites. Leveraging these exceptional properties, practical demonstrations highlight the immense potential of the robust material for applications demanding superior electromagnetic interference shielding and efficient heating. An innovative approach, which effectively decouples electrical conductivity from mechanical properties, paves the way for the creation of HPBGs tailored for diverse application sectors.
Breaking the Trade-Off Between Electrical Conductivity and Mechanical Strength in Bulk Graphite Using Metal-Organic Framework-Derived Precursors.
阅读:4
作者:Zhang Yuqing, Wang Junzhuo, Zhang Yinghan, Zheng Qi, Wang Lianjun, Jiang Wan
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;12(9):e2416210 |
| doi: | 10.1002/advs.202416210 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
