Deep generative AI models analyzing circulating orphan non-coding RNAs enable detection of early-stage lung cancer

利用深度生成式人工智能模型分析循环孤儿非编码RNA,可以检测早期肺癌。

阅读:7
作者:Mehran Karimzadeh # ,Amir Momen-Roknabadi # ,Taylor B Cavazos # ,Yuqi Fang ,Nae-Chyun Chen ,Michael Multhaup ,Jennifer Yen ,Jeremy Ku ,Jieyang Wang ,Xuan Zhao ,Philip Murzynowski ,Kathleen Wang ,Rose Hanna ,Alice Huang ,Diana Corti ,Dang Nguyen ,Ti Lam ,Seda Kilinc ,Patrick Arensdorf ,Kimberly H Chau ,Anna Hartwig ,Lisa Fish ,Helen Li ,Babak Behsaz ,Olivier Elemento ,James Zou ,Fereydoun Hormozdiari ,Babak Alipanahi ,Hani Goodarzi

Abstract

Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generative capability of variational auto-encoders enables learning a robust and generalizable signature of blood-based biomarkers. In this study, we analyze orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as sex-, age-, and BMI-matched controls. We demonstrate that our multi-task generative AI model, Orion, surpasses commonly used methods in both overall performance and generalizability to held-out datasets. Orion achieves an overall sensitivity of 94% (95% CI: 87%-98%) at 87% (95% CI: 81%-93%) specificity for cancer detection across all stages, outperforming the sensitivity of other methods on held-out validation datasets by more than ~ 30%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。