Deep generative AI models analyzing circulating orphan non-coding RNAs enable detection of early-stage lung cancer.

阅读:3
作者:Karimzadeh Mehran, Momen-Roknabadi Amir, Cavazos Taylor B, Fang Yuqi, Chen Nae-Chyun, Multhaup Michael, Yen Jennifer, Ku Jeremy, Wang Jieyang, Zhao Xuan, Murzynowski Philip, Wang Kathleen, Hanna Rose, Huang Alice, Corti Diana, Nguyen Dang, Lam Ti, Kilinc Seda, Arensdorf Patrick, Chau Kimberly H, Hartwig Anna, Fish Lisa, Li Helen, Behsaz Babak, Elemento Olivier, Zou James, Hormozdiari Fereydoun, Alipanahi Babak, Goodarzi Hani
Liquid biopsies have the potential to revolutionize cancer care through non-invasive early detection of tumors. Developing a robust liquid biopsy test requires collecting high-dimensional data from a large number of blood samples across heterogeneous groups of patients. We propose that the generative capability of variational auto-encoders enables learning a robust and generalizable signature of blood-based biomarkers. In this study, we analyze orphan non-coding RNAs (oncRNAs) from serum samples of 1050 individuals diagnosed with non-small cell lung cancer (NSCLC) at various stages, as well as sex-, age-, and BMI-matched controls. We demonstrate that our multi-task generative AI model, Orion, surpasses commonly used methods in both overall performance and generalizability to held-out datasets. Orion achieves an overall sensitivity of 94% (95% CI: 87%-98%) at 87% (95% CI: 81%-93%) specificity for cancer detection across all stages, outperforming the sensitivity of other methods on held-out validation datasets by more than  ~ 30%.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。