Traction-force microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem whereby low-magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce deep morphology traction microscopy (DeepMorphoTM), a deep-learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiduciarily marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell-contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in two dimensions.
Inferring cellular contractile forces and work using deep morphology traction microscopy.
阅读:1
作者:Tao Yuanyuan, Ghagre Ajinkya, Molter Clayton W, Clouvel Anna, Al Rahbani Jalal, Brown Claire M, Nowrouzezahrai Derek, Ehrlicher Allen J
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2024 | 起止号: | 2024 Sep 17; 123(18):3217-3230 |
| doi: | 10.1016/j.bpj.2024.07.020 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
