Tailoring Piezoelectric Nanogenerators and Microdevices for Cellular Excitation: Impact of Size and Morphology.

阅读:4
作者:Lefaix Laura, Navarro Marc, Nogués Carme, Blanquer Andreu, Murillo Gonzalo
The use of piezoelectric devices as wireless electrical stimulators is an emerging research topic. In this study, piezoelectric microdevices, consisting of ZnO nanosheets (NSs) functioning as piezoelectric nanogenerators (NGs) grown on top of silicon microparticles, to electrically stimulate cell are designed. The morphology of the ZnO NSs is optimized by tuning the thickness of the aluminum nitride (AlN) catalyst layer and adjusting the growth duration. ZnO NSs grown on thinner AlN layers (≤ 200 nm) and subjected to 9 h of hydrothermal growth exhibit the most suitable characteristics for cell stimulation, balancing crystal size, and electric field generation. The generation of a local electric field capable of exciting osteoblast cells is inferred from finite element simulations and intracellular calcium influx measurements. The internalization rate of silicon microdevices of varying sizes (3 × 3, 6 × 10, 12 × 18 µm(2)) by osteosarcoma (Saos-2) and primary human osteoblast (hOB) cells is assessed. The results show that smaller devices have higher internalization rates, particularly in tumoral Saos-2 cells, while primary cells exhibit minimal internalization (< 10%) across all particle sizes. This study presents an optimized piezoelectric microdevice, based on a scalable and customizable fabrication process, for minimally invasive bioelectronic applications, offering accurate electrical cell stimulation while minimizing unwanted internalization.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。