A Review of Biogenic Coalbed Methane Experimental Studies in China.

阅读:17
作者:Chen Run, Bao Yunxia, Zhang Yajun
Biogenic coalbed methane (CBM) is an important alternative energy that can help achieve carbon neutrality. Accordingly, its exploration and development have become a research hotspot in the field of fossil energy. In this review, the latest detection technologies for and experimental research on biogenic CBM in China in recent decades are summarized. The factors influencing the generation of biogenic CBM and the identification method of biogenic CBM are systematically analyzed. The technologies to detect biogas and the research methods to study microbial diversity are summarized. The literature shows that biogenic CBM is easily produced in the presence of highly abundant organic matter of low maturity, and the organic matter reaching a certain thickness can compensate for the limitation of biogenic CBM gas production due to the small abundance of organic matter to a certain extent. Biogenic CBM production could be increased in an environment with low salinity, medium alkalinity, and rich Fe(2+) and Ni(2+) sources. Furthermore, biogenic CBM can be identified by considering three aspects: (1) the presence of gas composition indicators; (2) the content of heavy hydrocarbon; and (3) variation in the abundance of biomarkers. In recent years, research methods to study the microbial community and diversity of CBM-producing environments in China have mainly included 16S rRNA gene library, fluorescence in situ hybridization, and high-throughput sequencing, and the dominant microorganisms have been determined in various basins in China. The results of numerous studies show that the dominant bacterial phyla are commonly Firmicutes and Proteobacteria, while the archaeal fraction mainly includes Methanoculleus, Methanobacterium, Methanocorpusculum, and Methanothrix. This review summarizes and discusses the advances in biogenic CBM production and the associated microbial community in order to promote further development of coal biotransformation and CO(2) bio-utilization to meet energy demands under carbon neutrality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。