OBJECTIVES: To explore the protective effect of vitexin-4 â³-O-glucoside (VOG) against acetaminophen-induced acute liver injury in mice and its underlying mechanism. METHODS: C57BL/6 mice were randomly divided into 4 groups: normal control group, model control group, low-dose group of VOG (30 mg/kg), and high-dose group of VOG (60 mg/kg). Acute liver injury was induced by intraperitoneal injection of acetaminophen (500 mg/kg). VOG was administrated by gavage 2 h before acetaminophen treatment in VOG groups. The protective effect of VOG against acute liver injury was evaluated by detecting alanine transaminase (ALT), aspartate transaminase (AST) levels and hematoxylin and eosin staining. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity in liver were detected to evaluate the hepatic oxidative stress. The expression levels of tumor necrosis factor (TNF)-α, Il-1β, and Il-6 in liver were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression levels of phosphorylated c-jun N-terminal kinase (JNK)/JNK, phosphorylated p38/p38, inositol-requiring enzyme 1 alpha (IRE-1α), X-box binding protein 1s (XBP1s), and glucose-regulated protein 78 (GRP78) in liver were detected by Western blotting. An endoplasmic reticulum stress model was established in AML-12 cells using tunicamycin. Cell viability was assessed using the CCK-8 assay, and the degree of cell damage was detected by lactate dehydrogenase (LDH) assay. The gene expression levels of Ire-1α, Xbp1s, and Grp78 in the cells were detected using qRT-PCR. RESULTS: In the animal experiments, compared with the model control group, VOG significantly improved plasma ALT and AST levels, liver MDA content, as well as SOD and CAT activities. VOG also reduced the expression levels of Tnf-α, Il-1β, and Il-6 in the liver, and improved protein phosphorylation levels of JNK and p38, as well as the protein expression levels of IRE-1α, XBP1s, and GRP78. In cell experiments, VOG pretreatment enhanced cell viability, reduced LDH release and decreased the mRNA expression of Ire-1α, Xbp1s, and Grp78. CONCLUSIONS: VOG can suppress inflammation and oxidative stress, and alleviate acetaminophen-induced acute liver injury in mice by suppressing endoplasmic reticulum stress and modulating the MAPK signaling pathway.
[Vitexin-4 â³-O-glucoside alleviates acetaminophen-induced acute liver injury].
阅读:18
作者:Dong Fan, Lai Shanglei, Qiu Jiannan, Dou Xiaobing
| 期刊: | Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 25; 54(3):307-317 |
| doi: | 10.3724/zdxbyxb-2024-0381 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
