Perindopril Ameliorates Sodium Valproate-Induced Rat Model of Autism: Involvement of Sirtuin-1, JAK2/STAT3 Axis, PI3K/Akt/GSK-3β Pathway, and PPAR-Gamma Signaling.

阅读:2
作者:Alnakhli Anwar M, Saleh Asmaa, Kabel Ahmed M, Estfanous Remon S, Borg Hany M, Alsufyani Khulud M, Sabry Nesreen M, Gomaa Fatma Alzahraa M, Abd Elmaaboud Maaly A
Background and Objectives: Autism is a developmental disability characterized by impairment of motor functions and social communication together with the development of repetitive or stereotyped behaviors. Neither the exact etiology or the curative treatment of autism are yet completely explored. The goals of this study were to evaluate the possible effects of perindopril on a rat model of autism and to elucidate the possible molecular mechanisms that may contribute to these effects. Materials and Methods: In a rat model of sodium valproate (VPA)-induced autism, the effect of postnatal administration of different doses of perindopril on growth and motor development, social and repetitive behaviors, sirtuin-1, oxidative stress and inflammatory markers, PI3K/Akt/GSK-3β pathway, JAK2/STAT3 axis, and PPAR-gamma signaling in the hippocampal tissues were investigated. The histopathological and electron microscopic changes elicited by administration of the different treatments were also investigated. Results: Perindopril dose-dependently combatted the effects of prenatal exposure to VPA on growth and maturation, motor development, and social and repetitive behaviors. In addition, the different doses of perindopril ameliorated the effects of prenatal exposure to VPA on sirtuin-1, oxidative stress and inflammatory markers, PI3K/Akt/GSK-3β pathway, JAK2/STAT3 axis, and PPAR-gamma signaling. These effects had a mitigating impact on VPA-induced histopathological and electron microscopic changes in the hippocampal tissues. Conclusions: Perindopril may emerge as a promising agent for amelioration of the pathologic changes of autism spectrum disorders.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。