DNA methylation plays a fundamental role in regulating transcription during development and differentiation. However, its functional role in the regulation of endothelial cell (EC) transcription during state transition, meaning the switch from an angiogenic to a quiescent cell state, has not been systematically studied. Here, we report the longitudinal changes of the DNA methylome over the lifetime of the murine pulmonary vasculature. We identified prominent alterations in hyper- and hypomethylation during the transition from angiogenic to quiescent ECs. Once a quiescent state was established, DNA methylation marks remained stable throughout EC aging. These longitudinal differentially methylated regions correlated with endothelial gene expression and highlighted the recruitment of de novo DNA methyltransferase 3a (DNMT3A), evidenced by its motif enrichment at transcriptional start sites of genes with methylation-dependent expression patterns. Loss-of-function studies in mice revealed that the absence of DNMT3A-dependent DNA methylation led to the loss of active enhancers, resulting in mild transcriptional changes, likely due to loss of active enhancer integrity. These results underline the importance of DNA methylation as a key epigenetic mechanism of EC function during state transition. Furthermore, we show that DNMT3A-dependent DNA methylation appears to be involved in establishing the histone landscape required for accurate transcriptome regulation.
DNMT3A-dependent DNA methylation shapes the endothelial enhancer landscape.
阅读:3
作者:Gehrs Stephanie, Gu Zuguang, Hey Joschka, Weichenhan Dieter, Buckwalter Niklas, Jakab Moritz, Hotz-Wagenblatt Agnes, Breuer Kersten, Prada Maria Llamazares, Hübschmann Daniel, Schlereth Katharina, Plass Christoph, Augustin Hellmut
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 May 22; 53(10):gkaf435 |
| doi: | 10.1093/nar/gkaf435 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
