The G-protein β subunit SlGB1 regulates tyramine-derived phenolamide metabolism for shoot apex growth and development in tomato.

阅读:19
作者:Wang Jiao, Luo Qian, Deng Jingjing, Liang Xiao, Li Yimei, Wang Anran, Lin Teng, Liu Hua, Zhang Xuanbo, Liu Zhaoyu, Hu Zhangjian, Ding Shuting, Pan Changtian, Yu Jingquan, Gao Qifei, Foyer Christine H, Shi Kai
The shoot apex is a critical determinant of plant growth, development, morphology, and yield. The G-protein β subunit (Gβ) is an essential regulator of apical meristem dynamics, yet its precise mechanism of action remains unclear, with notable interspecific variation. This study reveals that in the dicot tomato (Solanum lycopersicum), Gβ subunit mutants (Slgb1) display abnormal shoot morphogenesis and, in severe cases, shoot apex death. Such a phenotype has also been observed in monocot species, like maize (Zea mays) and rice (Oryza sativa), but not in the model dicot Arabidopsis (Arabidopsis thaliana). Using integrated multiomics and liquid chromatography-mass spectrometry, we identified a significant upregulation in tyramine-derived phenolamides in Slgb1 mutants, particularly N-p-trans-coumaroyltyramine (N-P-CT) and N-trans-feruloyltyramine (N-FT). Biochemical and genetic assays pinpointed tyramine hydroxycinnamoyl transferases (THTs) as the enzymes catalyzing N-P-CT and N-FT biosynthesis, with THT8 overexpression inducing shoot apex death. Comparative genomic analysis revealed the presence of a THT-mediated tyramine-derived phenolamide metabolic pathway in species exhibiting gb1 mutant-associated apex death, which is notably absent in Arabidopsis. Protein interaction assays showed that SlGB1 interacts with bHLH79 at the cell membrane and cytoplasm, thereby attenuating the bHLH79-MYB10 interaction within the nucleus, leading to altered THT expression and phenolamide biosynthesis. This study unravels the molecular mechanisms by which SlGB1 governs tomato shoot apex growth and development, highlighting interspecific differences critical for developing breeding strategies aimed at optimizing shoot apex architecture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。