Overexpression of EphB4 promotes neurogenesis, but inhibits neuroinflammation in mice with acute ischemic stroke

EphB4 过度表达促进神经发生,但抑制急性缺血性中风小鼠的神经炎症

阅读:6
作者:Jin Wang, Zun Zhang, Shaojing Fu, Xiaojie Li, Xinhui Li, Shaobin Wang, Lihe Yuan

Abstract

Ischemic stroke is one of the most common diseases that has a high rate of mortality, and has become a burden to the healthcare system. Previous research has shown that EPH receptor B4 (EphB4) promotes neural stem cell proliferation and differentiation in vitro. However, little is known regarding its role in the neurogenesis of ischemic stroke in vivo. Thus, the present study aimed to verify whether EphB4 was a key regulator of neurogenesis in ischemic stroke in vivo. Cerebral ischemia was induced in C57BL/6J mice via middle cerebral artery occlusion (MCAO), followed by reperfusion. Immunofluorescence staining was performed to evaluate the effect of EphB4 on the neurogenesis in cerebral cortex. The levels of inflammatory cytokines were determined using an ELISA kit. The expression levels of ABL proto‑oncogene 1, non‑receptor tyrosine kinase (ABL1)/Cyclin D1 signaling pathway‑related proteins were detected via western blotting. The current findings indicated that EphB4 expression was significantly increased in the cerebral cortex of MCAO model mice in comparison with sham‑operated mice. Moreover, EphB4 appeared to be expressed in neural stem cells (Nestin+), and persisted as these cells became neuronal progenitors (Sox2+), neuroblasts [doublecortin (DCX)+], and eventually mature neurons [neuronal nuclei (NeuN)+]. Overexpression of EphB4 elevated the number of proliferating (bromodeoxyuridine+, Ki67+) and differentiated cells (Nestin+, Sox2+, DCX+ and NeuN+), indicating the promoting effect of EphB4 on the neurogenesis of ischemic stroke. Furthermore, EphB4 overexpression alleviated the inflammation injury in MCAO model mice. The expression levels of proteins‑related to the ABL1/Cyclin D1 signaling pathway were significantly increased by the overexpression of EphB4, which suggested that restoration of EphB4 promoted the activation of the ABL1/Cyclin D1 signaling pathway. In conclusion, this study contributes to the current understanding of the mechanisms of EphB4 in exerting neurorestorative effects and may recommend a potential new strategy for ischemic stroke treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。