Assignment of the antibacterial potential of Ag2O/ZnO nanocomposite against MDR bacteria Proteus mirabilis and Salmonella typhi isolated from bone marrow transplant patients

Ag2O/ZnO 纳米复合材料对骨髓移植患者分离的 MDR 细菌奇异变形杆菌和伤寒沙门氏菌的抗菌潜力评估

阅读:9
作者:Eithar El-Mohsnawy, Abdelhamid El-Shaer, Fadia El-Gharabawy, Eslam E El-Hawary, Abd El-Raheem Ramadan El-Shanshoury

Abstract

The rate of infectious diseases started to be one of the major mortality agents in the healthcare sector. Exposed to increased bacterial infection by antibiotic-resistant bacteria became one of the complications that occurred for bone marrow transplant patients. Nanotechnology may provide clinicians and patients with the key to overcoming multidrug-resistant bacteria. Therefore, this study was conducted to clarify the prevalence of MDR bacteria in bone marrow transplant recipients and the use of Ag2O/ZnO nanocomposites to treat participants of diarrhea brought on by MDR bacteria following bone marrow transplantation (BMT). Present results show that pathogenic bacteria were present in 100 of 195 stool samples from individuals who had diarrhea. Phenotypic, biochemical, and molecular analysis clarify that Proteus mirabilis and Salmonella typhi were detected in 21 and 25 samples, respectively. Successful synthesis of Ag2O/ZnO nanocomposites with a particle enables to inhibition of both pathogens. The maximum inhibitory impact was seen on Salmonella typhi. At low doses (10-5 g/l), it prevented the growth by 53.4%, while at higher concentrations (10-1 g/l), Salmonella typhi was inhibited by 95.5%. Regarding Proteus mirabilis, at (10-5 g/l) Ag2O/ZnO, it was inhabited by 78.7%, but at higher concentrations (10-1 g/l), it was inhibited the growth by 94.6%. Ag2O/ZnO nanocomposite was therefore found to be the most effective therapy for MDR-isolated bacteria and offered promise for the treatment of MDR bacterial infections that cause diarrhea.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。