MiR-216a-5p alleviates LPS-induced inflammation in the human bronchial epithelial cell by inhibition of TGF-β1 signaling via down-regulating TGFBR2

MiR-216a-5p 通过下调 TGFBR2 抑制 TGF-β1 信号传导,减轻 LPS 诱导的人类支气管上皮细胞炎症

阅读:7
作者:Shan Liu, Jianjun Li, Liya Hu

Conclusion

miR-216a-5p was decreased in LPS-stimulated BEAS-2B cells. Overexpressed miR-216a-5p suppressed LPS-induced inflammation in BEAS-2B cells by inhibition of TGF-β1 signaling via down-regulating TGFBR2. miR-216a-5p may be a valuable target for anti-inflammation treatment in bronchopneumonia.Bronchopneumonia is a common respiratory infection disease and is the main cause of hospitalization in children under 5 years of age. Inflammation is a primary response caused by bronchopneumonia. But the detailed underlying mechanism of inflammation in bronchopneumonia remains unclear. Therefore, this study focused on studying the effect of miR-216a-5p on inflammation caused by bronchopneumonia and investigate the potential mechanism underlying it. In this study, human bronchial epithelial cells (BEAS-2B) were stimulated using lipopolysaccharides (LPS) to trigger bronchopneumonia in vitro. miR-216a-5p was decreased in BEAS-2B cells stimulated by LPS. Overexpression of miR-216a-5p suppressed the elevated levels of interleukin (IL)-1β, IL-6, and Tumor necrosis factor (TNF)-α induced by LPS. Transforming growth factor-beta receptor 2 (TGFBR2) proved to be a direct target of miR-216a-5p, and they negatively modulated TGFBR2 expression. In addition, overexpression of miR-216a-5p inhibited LPS-induced protein levels of TGFBR2,transforming growth factor-beta 1 (TGF-β1), and phosphorylation of SMAD family member 2 (smad2. This ectopic overexpression of miR-216a-5p was restored by overexpressed TGFBR2. In conclusion, miR-216a-5p was decreased in LPS-stimulated BEAS-2B cells. Overexpressed miR-216a-5p suppressed LPS-induced inflammation in BEAS-2B cells by inhibition of TGF-β1 signaling via down-regulating TGFBR2. miR-216a-5p may be a valuable target for anti-inflammation treatment in bronchopneumonia.

Methods

Human bronchial epithelial cells (BEAS-2B) were stimulated using lipopolysaccha-rides (LPS) to trigger bronchopneumonia in vitro. The production of interleukin (IL)-1β, IL-6, and Tumor necrosis factor (TNF)-α was measured using the enzyme-linked immunosorbent assay. The luciferase assay was conducted to explore the relationship between miR-216a-5p and TGFBR2. Quantitative real-time polymerase chain reaction and western blot were used to detect the gene expression.

Objective

Bronchopneumonia is a common respiratory infection disease and is the leading cause of hospitalization in children under 5 years of age. Inflammation is the primary response caused by bronchopneumonia. But the detailed underlying mechanism of inflammation in bronchopneumonia remains unclear. Therefore, this study focused on studying the effect of miR-216a-5p on inflammation induced by bronchopneumonia and investigate the potential mechanism underlying it.

Results

miR-216a-5p gene expression decreased in BEAS-2B cells stimulated by LPS. Overexpression of miR-216a-5p suppressed the elevated levels of IL-1β, IL-6, and TNF-α induced by LPS. Transforming growth factor-beta receptor 2 (TGFBR2) proved to be a direct target of miR-216a-5p, and they negatively modulated TGFBR2 expression. In addition, overexpression of miR-216a-5p inhibited LPS-induced protein levels of TGFBR2,transforming growth factor (TGF)-β1, and phosphorylation of SMAD family member 2 (smad2),. This ectopic expression of miR-216a-5p was restored by overexpressed TGFBR2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。