Serine 26 in Early Growth Response-1 Is Critical for Endothelial Proliferation, Migration, and Network Formation

早期生长反应-1 中的丝氨酸 26 对内皮细胞增殖、迁移和网络形成至关重要

阅读:6
作者:Fernando S Santiago, Yue Li, Levon M Khachigian

Abstract

Background Vascular endothelial cell proliferation, migration, and network formation are key proangiogenic processes involving the prototypic immediate early gene product, Egr-1 (early growth response-1). Egr-1 undergoes phosphorylation at a conserved Ser26 but its function is completely unknown in endothelial cells or any other cell type. Methods and Results A CRISPR/Cas9 strategy was used to introduce a homozygous Ser26>Ala mutation into endogenous Egr-1 in human microvascular endothelial cells. In the course of generating mutant cells, we produced cells with homozygous deletion in Egr-1 caused by frameshift and premature termination. We found that Ser26 mutation in Egr-1, or Egr-1 deletion, perturbed endothelial cell proliferation in models of cell counting or real-time growth using the xCELLigence System. We found that Ser26 mutation or Egr-1 deletion ameliorated endothelial cell migration toward VEGF-A165 (vascular endothelial growth factor-A) in a dual-chamber model. On solubilized basement membrane preparations, Ser26 mutation or Egr-1 deletion prevented endothelial network (or tubule) formation, an in vitro model of angiogenesis. Flow cytometry further revealed that Ser26 mutation or Egr-1 deletion elevated early and late apoptosis. Finally, we demonstrated that Ser26 mutation or Egr-1 deletion increased VE-cadherin (vascular endothelial cadherin) expression, a regulator of endothelial adhesion and signaling, permeability, and angiogenesis. Conclusions These findings not only indicate that Egr-1 is essential for endothelial cell proliferation, migration, and network formation, but also show that point mutation in Ser26 is sufficient to impair each of these processes and trigger apoptosis as effectively as the absence of Egr-1. This highlights the importance of Ser26 in Egr-1 for a range of proangiogenic processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。