Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors

细菌 RNA 聚合酶用各种辅因子和细胞壁前体对 RNA 进行加帽

阅读:4
作者:Christina Julius, Yulia Yuzenkova

Abstract

Bacterial RNA polymerase is able to initiate transcription with adenosine-containing cofactor NAD+, which was proposed to result in a portion of cellular RNAs being 'capped' at the 5' end with NAD+, reminiscent of eukaryotic cap. Here we show that, apart from NAD+, another adenosine-containing cofactor FAD and highly abundant uridine-containing cell wall precursors, UDP-Glucose and UDP-N-acetylglucosamine are efficiently used to initiate transcription in vitro. We show that the affinity to NAD+ and UDP-containing factors during initiation is much lower than their cellular concentrations, and that initiation with them stimulates promoter escape. Efficiency of initiation with NAD+, but not with UDP-containing factors, is affected by amino acids of the Rifampicin-binding pocket, suggesting altered RNA capping in Rifampicin-resistant strains. However, relative affinity to NAD+ does not depend on the -1 base of the template strand, as was suggested earlier. We show that incorporation of mature cell wall precursor, UDP-MurNAc-pentapeptide, is inhibited by region 3.2 of σ subunit, possibly preventing targeting of RNA to the membrane. Overall, our in vitro results propose a wide repertoire of potential bacterial RNA capping molecules, and provide mechanistic insights into their incorporation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。