Expression and Characterization of Membrane-Type 4 Matrix Metalloproteinase (MT4-MMP) and its Different Forms in Melanoma

膜型 4 基质金属蛋白酶 (MT4-MMP) 及其不同形式在黑色素瘤中的表达和表征

阅读:6
作者:Bettina Hieronimus, Julian Pfohl, Christian Busch, Lutz Graeve

Aims

Membrane-type matrix metalloproteinases (MT-MMPs) are expressed on the cell surface and hydrolyze extracellular matrix components and signaling molecules by which they influence cancer cell migration and metastasis. Two of the six known MT-MMPs are anchored to the plasma membrane via a GPI anchor, one of which is MT4-MMP. Only little is known about MT4-MMP expression, synthesis, regulation and degradation.

Background/aims

Membrane-type matrix metalloproteinases (MT-MMPs) are expressed on the cell surface and hydrolyze extracellular matrix components and signaling molecules by which they influence cancer cell migration and metastasis. Two of the six known MT-MMPs are anchored to the plasma membrane via a GPI anchor, one of which is MT4-MMP. Only little is known about MT4-MMP expression, synthesis, regulation and degradation.

Conclusion

We demonstrate the novel expression of MT4-MMP in melanocytic tissues and propose a precursor/product-relationship of the different forms of MT4-MMP in melanoma cells.

Methods

We analyzed several human cancer cell lines as well as tissue homogenates using Western blotting and quantitative PCR for the expression of MT4-MMP. Organelles of SK-Mel-28 cells were separated using continuous Iodixanol gradients. Glycosylation of the SK-Mel-28 protein was studied via glucosidases and site directed mutagenesis of the MT4-MMP cDNA prior to transfection.

Results

We found the MT4-MMP highly expressed in human melanoma cell lines as well as skin and melanoma tissue samples. Three forms of MT4-MMP with molecular masses of 45 kDa, 58 kDa and 69 kDa were detected. Further, we demonstrate that the 58 kDa form is the mature protein in the cell membrane, while the 69 kDa form is its precursor found in intracellular compartments. The 69 kDa forms are processed by furin cleavage in the Golgi apparatus. Moreover, we identified Asn318 as the single N-glycosylation site of MT4-MMP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。