Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model of psychiatric vulnerability

在精神疾病易感性大鼠模型中,前额叶5-羟色胺5-HT(2)受体功能增强。

阅读:2
作者:Madhurima Benekareddy ,Nathalie M Goodfellow, Evelyn K Lambe, Vidita A Vaidya

Abstract

Prefrontal serotonin 5-HT(2) receptors have been linked to the pathogenesis and treatment of affective disorders, yet their function in psychiatric vulnerability is not known. Here, we examine the effects of 5-HT(2) receptors in a rat model of psychiatric vulnerability using electrophysiology, gene expression, and behavior. Following the early stress of chronic maternal separation, we found that serotonin has atypical 5-HT(2) receptor-mediated excitatory effects in the adult prefrontal cortex that were blocked by the 5-HT(2A) receptor antagonist MDL 100907. In the absence of a serotonergic agonist, the intrinsic excitability of the prefrontal cortex was not enhanced relative to controls. Yet, in response to stimulation of 5-HT(2) receptors, adult animals with a history of early stress exhibit heightened prefrontal network activity in vitro, enhanced immediate early gene expression in vivo, and potentiated head shake behavior. These changes arise in the absence of any major alteration of prefrontal 5-HT(2A/C) mRNA expression or 5-HT(2) receptor binding. Our microarray results and quantitative PCR validation provide insight into the molecular changes that accompany such enhanced 5-HT(2) receptor function in adult animals following early stress. We observed persistent prefrontal transcriptome changes, with significant enrichment of genes involved in cellular developmental processes, regulation of signal transduction, and G-protein signaling. Specific genes regulated by early stress were validated in an independent cohort, and several altered genes were normalized by chronic blockade of 5-HT(2) receptors in adulthood. Together, our results demonstrate enhanced prefrontal 5-HT(2) receptor function and persistent alterations in prefrontal gene expression in a rat model of psychiatric vulnerability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。