MicroRNA‑181 exerts an inhibitory role during renal fibrosis by targeting early growth response factor‑1 and attenuating the expression of profibrotic markers

MicroRNA-181 通过靶向早期生长反应因子-1 和减弱促纤维化标志物的表达,在肾脏纤维化过程中发挥抑制作用

阅读:11
作者:Xiaoyan Zhang, Zhenning Yang, Yanyan Heng, Congxiu Miao

Abstract

Progressive renal fibrosis is a common complication of chronic kidney disease that results in end‑stage renal disorder. It is well established that several microRNAs (miRs) function as critical regulators implicated in fibrotic diseases. However, the role of miR‑181 in the development and progression of renal fibrosis remains unclear, and the precise mechanism has not yet been fully defined. The present study identified the functional implications of miR‑181 expression during renal fibrosis. miR‑181 exhibited significantly reduced expression in the serum of renal fibrosis patients and in the kidneys of mice with unilateral ureteral obstruction (UUO). In addition, miR‑181 downregulated the expression of human α‑smooth muscle actin (α‑SMA) in response to angiotensin II stimulation. Transfection with miR‑181 mimics significantly suppressed the expression levels of α‑SMA, connective tissue growth factor, collagen type I α1 (COL1A1) and collagen type III α1 (COL3A1) in NRK49F cells. Notably, early growth response factor‑1 (Egr1) was identified as a direct target gene of miR‑181. Furthermore, in vivo experiments revealed that treatment with miR‑181 agonist strongly rescued kidney impairment induced by UUO, as supported by Masson's trichrome staining of kidney tissues and reverse transcription‑quantitative polymerase chain reaction analysis of COL1A1 and COL3A1 mRNA levels. Therefore, miR‑181 may be regarded as an important mediator in the control of profibrotic markers during renal fibrosis via binding to Egr1, and may be a promising new target in the diagnosis and therapy of renal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。