Controlling technical variation amongst 6693 patient microarrays of the randomized MINDACT trial

控制随机MINDACT试验中6693例患者微阵列的技术变异

阅读:2
作者:Laurent Jacob ,Anke Witteveen ,Inès Beumer ,Leonie Delahaye ,Diederik Wehkamp ,Jeroen van den Akker ,Mireille Snel ,Bob Chan ,Arno Floore ,Niels Bakx ,Guido Brink ,Coralie Poncet ,Jan Bogaerts ,Mauro Delorenzi ,Martine Piccart ,Emiel Rutgers ,Fatima Cardoso ,Terence Speed ,Laura van 't Veer ,Annuska Glas

Abstract

Gene expression data obtained in large studies hold great promises for discovering disease signatures or subtypes through data analysis. It is also prone to technical variation, whose removal is essential to avoid spurious discoveries. Because this variation is not always known and can be confounded with biological signals, its removal is a challenging task. Here we provide a step-wise procedure and comprehensive analysis of the MINDACT microarray dataset. The MINDACT trial enrolled 6693 breast cancer patients and prospectively validated the gene expression signature MammaPrint for outcome prediction. The study also yielded a full-transcriptome microarray for each tumor. We show for the first time in such a large dataset how technical variation can be removed while retaining expected biological signals. Because of its unprecedented size, we hope the resulting adjusted dataset will be an invaluable tool to discover or test gene expression signatures and to advance our understanding of breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。