Excito-repellency of Myristica fragrans Houtt. and Curcuma longa L. extracts from Southern Thailand against Aedes aegypti (L.)

肉豆蔻 Houtt 的兴奋排斥作用。泰国南部的姜黄提取物对抗埃及伊蚊 (L.)

阅读:2
作者:Phuangthip Bhoopong ,Theeraphap Chareonviriyaphap ,Chutipong Sukkanon

Abstract

The development of local plant extracts as a mosquito repellent is environmentally safe, inexpensive, and easily accessible for residents. In this study, three extracts from two local plants, Myristica fragrans Houtt. (flesh and mace) and Curcuma longa L. (rhizome) from southern Thailand, were investigated for their inherent repellent activity using the excito-repellency (ER) assay system against insectary-colonized Aedes aegypti (L.) (Diptera: Culicidae). The escape responses of mosquitoes exposed to concentrations of 0.5% to 5.0% (w/v) were measured to determine the contact irritant and non-contact repellent properties of each extract. Both the flesh and mace extracts of M. fragrans had relatively limited contact irritants (28.1% and 34.6% escape) and non-contact repellent (16.7% and 18.3% escape) activities against Ae. aegypti, respectively. The C. longa rhizome extract produced higher escape responses in the non-contact (42.6% escape) and contact (41.4% escape) trials at concentrations of 5.0% and 1.0%, respectively. GC-MS analysis found diethyl malate (56.5%) and elemicin (11.7%) to be the main components of the flesh and mace extracts, respectively, while ar-turmerone (24.6%), β-turmerone (15.2%), α-turmerone (10.5%) were the primary constituents of the rhizome extract. Overall, our results indicate that both M. fragrans extracts primarily caused Ae. aegypti escape through contact irritation. For C. longa, lower concentrations (0.5% and 1.0%) exhibited contact irritancy, but higher concentrations (2.5% and 5.0%) exhibited non-contact repellency against Ae. aegypti. Although they had limited efficacy, further experiments (e.g., mixing with other plant-based compounds) could enhance the ER of both local plant extracts. Additional evaluation of these extracts against other mosquito species and the ER of their chemical components, either alone or in combination, would also be beneficial for the development of green repellents. Our findings emphasize the possibility of utilizing plant-based mosquito repellent as an alternative personal protection method for future mosquito control programs. Keywords: Aedes aegypti; Curcuma longa; Excito-repellency; Mosquito repellent; Myristica fragrans; Plant extract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。