Repurposing N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human cytomegalovirus pUL89 endonuclease: Synthesis and biological characterization

将N-羟基噻吩并嘧啶-2,4-二酮(HtPD)重新用于人巨细胞病毒pUL89核酸内切酶抑制剂:合成和生物学表征

阅读:2
作者:Tianyu He ,Tiffany C Edwards ,Ryuichi Majima ,Eunkyung Jung ,Jayakanth Kankanala ,Jiashu Xie ,Robert J Geraghty ,Zhengqiang Wang

Abstract

The terminase complex of human cytomegalovirus (HCMV) is required for viral genome packaging and cleavage. Critical to the terminase functions is a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C). We have previously reported metal-chelating N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human immunodeficiency virus 1 (HIV-1) RNase H. In the current work, we have synthesized new analogs and resynthesized known analogs of two isomeric HtPD subtypes, anti-HtPD (13), and syn-HtPD (14), and characterized them as inhibitors of pUL89-C. Remarkably, the vast majority of analogs strongly inhibited pUL89-C in the biochemical endonuclease assay, with IC50 values in the nM range. In the cell-based antiviral assay, a few analogs inhibited HCMV in low μM concentrations. Selected analogs were further characterized in a biophysical thermal shift assay (TSA) and in silico molecular docking, and the results support pUL89-C as the protein target of these inhibitors. Collectively, the biochemical, antiviral, biophysical, and in silico data reported herein indicate that the isomeric HtPD chemotypes 13-14 can serve as valuable chemical platforms for designing improved inhibitors of HCMV pUL89-C. Keywords: Endonuclease; Human cytomegalovirus; Inhibitor; N-hydroxy thienopyrimidine-2,4-diones (HtPD); pUL89-C.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。