Quantitative in vitro and in vivo characterization of the human P32T mutant ITPase

人类 P32T 突变型 ITPase 的体外和体内定量表征

阅读:7
作者:Greg Herting, Katie Barber, Maria R Zappala, Richard P Cunningham, Nicholas E Burgis

Abstract

Human ITPase, encoded by the ITPA gene, and its orthologs (RdgB in Escherichia coli and HAM1 in Saccharomyces cerevisiae) exclude noncanonical nucleoside triphosphates (NTPs) from NTP pools. Deoxyinosine triphosphate (dITP) and 2'-deoxy-N-6-hydroxylaminopurine triphosphate are both hydrolyzed by ITPase to yield the corresponding deoxynucleoside monophosphate and pyrophosphate. In addition, metabolites of thiopurine drugs such as azathioprine have been shown to be substrates for ITPase. The ITPA 94C>A [P32T] variant is one of two polymorphisms associated with decreased ITPase activity. Furthermore, the ITPA 94C>A [P32T] variant is associated with an increased risk of adverse drug reactions for patients treated with azathioprine. The nature of the observed phenotypes for ITPA 94C>A [P32T] variant individuals is currently unclear. Our biochemical assays indicate the P32T ITPase has 55% activity with dITP compared to wild-type ITPase. Complementation experiments at 37 degrees C show that N-6-hydroxylaminopurine sensitivity of E. coli rdgB mutants is reduced with a plasmid bearing the ITPA 94C>A [P32T] gene approximately 50% less than with a plasmid bearing the wild-type ITPA gene. The reduction in sensitivity is less at 42 degrees C. Experiments with synthetic lethal E. coli recA(ts) rdgB mutants show that the ITPA 94C>A [P32T] gene also complements the recA(ts) rdgB growth deficiency at 42 degrees C approximately 40% lower than wild-type ITPA gene. Western blot analysis indicates that the expression level of P32T ITPase is reduced in these cells relative to wild type. Our data support the idea that P32T ITPase is a functional protein, albeit with a reduced rate of noncanonical NTP pyrophosphohydrolase activity and reduced protein stability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。