Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection

微生物胆汁盐水解酶介导粪便微生物移植治疗复发性艰难梭菌感染的疗效

阅读:9
作者:Benjamin H Mullish, Julie A K McDonald, Alexandros Pechlivanis, Jessica R Allegretti, Dina Kao, Grace F Barker, Diya Kapila, Elaine O Petrof, Susan A Joyce, Cormac G M Gahan, Izabela Glegola-Madejska, Horace R T Williams, Elaine Holmes, Thomas B Clarke, Mark R Thursz, Julian R Marchesi

Conclusion

Restoration of gut BSH functionality contributes to the efficacy of FMT in treating rCDI.

Objective

Faecal microbiota transplant (FMT) effectively treats recurrent Clostridioides difficile infection (rCDI), but its mechanisms of action remain poorly defined. Certain bile acids affect C. difficile germination or vegetative growth. We hypothesised that loss of gut microbiota-derived bile salt hydrolases (BSHs) predisposes to CDI by perturbing gut bile metabolism, and that BSH restitution is a key mediator of FMT's efficacy in treating the condition. Design: Using stool collected from patients and donors pre-FMT/post-FMT for rCDI, we performed 16S rRNA gene sequencing, ultra performance liquid chromatography mass spectrometry (UPLC-MS) bile acid profiling, BSH activity measurement, and qPCR of bsh/baiCD genes involved in bile metabolism. Human data were validated in C. difficile batch cultures and a C57BL/6 mouse model of rCDI.

Results

From metataxonomics, pre-FMT stool demonstrated a reduced proportion of BSH-producing bacterial species compared with donors/post-FMT. Pre-FMT stool was enriched in taurocholic acid (TCA, a potent C. difficile germinant); TCA levels negatively correlated with key bacterial genera containing BSH-producing organisms. Post-FMT samples demonstrated recovered BSH activity and bsh/baiCD gene copy number compared with pretreatment (p<0.05). In batch cultures, supernatant from engineered bsh-expressing E. coli and naturally BSH-producing organisms (Bacteroides ovatus, Collinsella aerofaciens, Bacteroides vulgatus and Blautia obeum) reduced TCA-mediated C. difficile germination relative to culture supernatant of wild-type (BSH-negative) E. coli. C. difficile total viable counts were ~70% reduced in an rCDI mouse model after administration of E. coli expressing highly active BSH relative to mice administered BSH-negative E. coli (p<0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。