Beetroot juice reduces infarct size and improves cardiac function following ischemia-reperfusion injury: Possible involvement of endogenous H2S

甜菜根汁可减少缺血再灌注损伤后的梗塞面积并改善心脏功能:可能与内源性 H2S 有关

阅读:8
作者:Fadi N Salloum, Gregory R Sturz, Chang Yin, Shabina Rehman, Nicholas N Hoke, Rakesh C Kukreja, Lei Xi

Abstract

Ingestion of high dietary nitrate in the form of beetroot juice (BRJ) has been shown to exert antihypertensive effects in humans through increasing cyclic guanosine monophosphate (cGMP) levels. Since enhanced cGMP protects against myocardial ischemia-reperfusion (I/R) injury through upregulation of hydrogen sulfide (H2S), we tested the hypothesis that BRJ protects against I/R injury via H2S. Adult male CD-1 mice received either regular drinking water or those dissolved with BRJ powder (10 g/L, containing ∼ 0.7 mM nitrate). Seven days later, the hearts were explanted for molecular analyses. Subsets of mice were subjected to I/R injury by occlusion of the left coronary artery for 30 min and reperfusion for 24 h. A specific inhibitor of H2S producing enzyme--cystathionine-γ-lyase (CSE), DL-propargylglycine (PAG, 50 mg/kg) was given i.p. 30 min before ischemia. Myocardial infarct size was significantly reduced in BRJ-fed mice (15.8 ± 3.2%) versus controls (46.5 ± 3.5%, mean ± standard error [SE], n = 6/group, P < .05). PAG completely blocked the infarct-limiting effect of BRJ. Moreover, BRJ significantly preserved ventricular function following I/R. Myocardial levels of H2S and its putative protein target--vascular endothelial growth factor receptor 2 (VEGFR2) were significantly increased by BRJ intake, whereas CSE mRNA and protein content did not change. Interestingly, the BRJ-induced cardioprotection was not associated with elevated blood nitrate-nitrite levels following I/R nor induction of cardiac peroxiredoxin 5, a mitochondrial antioxidant enzyme previously linked to nitrate-induced cardioprotection. We conclude that BRJ ingestion protects against post-I/R myocardial infarction and ventricular dysfunction possibly through CSE-mediated endogenous H2S generation. BRJ could be a promising natural and inexpensive nutraceutical supplement to reduce cardiac I/R injury in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。