HSP70L1-mediated intracellular priming of dendritic cell vaccination induces more potent CTL response against cancer

HSP70L1介导的树突状细胞疫苗胞内启动可诱导更强的抗癌CTL反应。

阅读:2
作者:Shuxun Liu ,Lin Yi ,Ma Ling ,Jinxia Jiang ,Lijun Song ,Juan Liu ,Xuetao Cao

Abstract

Heat-shock protein (HSP)-based immunotherapy is established on its adjuvant effects when applied via an extracellular approach to pulse and activate dendritic cells (DCs). Our previous studies indicate that DCs pulsed with recombinant fusion proteins of antigenic fragment and HSP70-like protein 1 (HSP70L1) are potent in stimulating antigen-specific Th1 responses. We herein evaluated the cytotoxic T cell (CTL) response by an intracellular approach of priming DCs with transfection of recombinant adenovirus-expressing the fusion gene of the 576-699 fragment of carcinoembryonic antigen (CEA) and HSP70L1. As compared with DCs pulsed with extracellular fusion protein, the DCs transfected with recombinant adenovirus expressing the fusion gene displayed equivalent mature phenotypes but less inflammatory appearance. However, the transfected DCs were superior to the pulsed DCs in inducing CEA-specific CTLs. Consistently, immunization of HLA-A2.1/H-2Kb transgene mice with the transfected DCs could induce more quantities of HLA-A2.1-restricted CEA-specific CTLs, protecting nude mice more significantly from human CEA-expressing colon tumor challenge when adoptively transferred. Mechanistic investigation indicated that intracellular expression of the fusion protein empowered the transfected DCs by activation of STAT1 possibly via inducing IFN-β and ERK pathways. Therefore, the more potent ability to induce anti-CEA CTL responses enables the DCs, which transfected with recombinant adenovirus expressing the fusion gene of antigenic CEA fragment and Th1 adjuvant, as an alternative promising approach for the immunotherapy of CEA-positive tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。