Overcoming challenges in variant calling: exploring sequence diversity in candidate genes for plant development in perennial ryegrass (Lolium perenne)

克服变异检测的挑战:探索多年生黑麦草(Lolium perenne)植物发育候选基因的序列多样性

阅读:3
作者:Elisabeth Veeckman ,Sabine Van Glabeke ,Annelies Haegeman ,Hilde Muylle ,Frederik R D van Parijs ,Stephen L Byrne ,Torben Asp ,Bruno Studer ,Antje Rohde ,Isabel Roldán-Ruiz ,Klaas Vandepoele ,Tom Ruttink

Abstract

Revealing DNA sequence variation within the Lolium perenne genepool is important for genetic analysis and development of breeding applications. We reviewed current literature on plant development to select candidate genes in pathways that control agronomic traits, and identified 503 orthologues in L. perenne. Using targeted resequencing, we constructed a comprehensive catalogue of genomic variation for a L. perenne germplasm collection of 736 genotypes derived from current cultivars, breeding material and wild accessions. To overcome challenges of variant calling in heterogeneous outbreeding species, we used two complementary strategies to explore sequence diversity. First, four variant calling pipelines were integrated with the VariantMetaCaller to reach maximal sensitivity. Additional multiplex amplicon sequencing was used to empirically estimate an appropriate precision threshold. Second, a de novo assembly strategy was used to reconstruct divergent alleles for each gene. The advantage of this approach was illustrated by discovery of 28 novel alleles of LpSDUF247, a polymorphic gene co-segregating with the S-locus of the grass self-incompatibility system. Our approach is applicable to other genetically diverse outbreeding species. The resulting collection of functionally annotated variants can be mined for variants causing phenotypic variation, either through genetic association studies, or by selecting carriers of rare defective alleles for physiological analyses. Keywords: allele reconstruction; genomic diversity; natural variation; targeted resequencing; variant calling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。