Abstract
Integrin alphaIIbbeta3 affinity regulation by talin binding to the cytoplasmic tail of beta3 is a generally accepted model for explaining activation of this integrin in Chinese hamster ovary cells and human platelets. Most of the evidence for this model comes from the use of multivalent ligands. This raises the possibility that the activation being measured is that of increased clustering of the integrin rather than affinity. Using a newly developed assay that probes integrins on the surface of cells with only monovalent ligands prior to fixation, I do not find increases in affinity of alphaIIbbeta3 integrins by talin head fragments in Chinese hamster ovary cells, nor do I observe affinity increases in human platelets stimulated with thrombin. Binding to a multivalent ligand does increase in both of these cases. This assay does report affinity increases induced by either Mn(2+), a cytoplasmic domain mutant (D723R) in the cytoplasmic domain of beta3, or preincubation with a peptide ligand. These results reconcile the previously observed differences between talin effects on integrin activation in Drosophila and vertebrate systems and suggest new models for talin regulation of integrin activity in human platelets.
