Hybrid Nanoparticles as a Novel Tool for Regulating Psychosine-Induced Neuroinflammation and Demyelination In Vitro and Ex vivo

混合纳米粒子作为调节神经肽诱发的神经炎症和脱髓鞘体外和离体的新工具

阅读:7
作者:Adryana Clementino #, Maria Velasco-Estevez #, Francesca Buttini, Fabio Sonvico, Kumlesh K Dev

Abstract

Polymeric nanoparticles are being extensively investigated as an approach for brain delivery of drugs, especially for their controlled release and targeting capacity. Nose-to-brain administration of nanoparticles, bypassing the blood brain barrier, offers a promising strategy to deliver drugs to the central nervous system. Here, we investigated the potential of hybrid nanoparticles as a therapeutic approach for demyelinating diseases, more specifically for Krabbe's disease. This rare leukodystrophy is characterized by the lack of enzyme galactosylceramidase, leading to the accumulation of toxic psychosine in glial cells causing neuroinflammation, extensive demyelination and death. We present evidence that lecithin/chitosan nanoparticles prevent damage associated with psychosine by sequestering the neurotoxic sphingolipid via physicochemical hydrophobic interactions. We showed how nanoparticles prevented the cytotoxicity caused by psychosine in cultured human astrocytes in vitro, and how the nanoparticle size and PDI augmented while the electrostatic charges of the surface decreased, suggesting a direct interaction between psychosine and the nanoparticles. Moreover, we studied the effects of nanoparticles ex vivo using mouse cerebellar organotypic cultures, observing that nanoparticles prevented the demyelination and axonal damage caused by psychosine, as well as a moderate prevention of the astrocytic death. Taken together, these results suggest that lecithin-chitosan nanoparticles are a potential novel delivery system for drugs for certain demyelinating conditions such as Krabbe's disease, due to their dual effect: not only are they an efficient platform for drug delivery, but they exert a protective effect themselves in tampering the levels of psychosine accumulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。