Insoluble Aβ overexpression in an App knock-in mouse model alters microstructure and gamma oscillations in the prefrontal cortex, affecting anxiety-related behaviours

在App基因敲入小鼠模型中,不溶性Aβ的过度表达会改变前额皮质的微观结构和γ振荡,从而影响焦虑相关行为。

阅读:2
作者:Eleftheria Pervolaraki ,Stephen P Hall ,Denise Foresteire ,Takashi Saito ,Takaomi C Saido ,Miles A Whittington ,Colin Lever ,James Dachtler

Abstract

We studied a new amyloid-beta precursor protein (App) knock-in mouse model of Alzheimer's disease (AppNL-G-F ), containing the Swedish KM670/671NL mutation, the Iberian I716F mutation and the Artic E693G mutation, which generates elevated levels of amyloid beta (Aβ)40 and Aβ42 without the confounds associated with APP overexpression. This enabled us to assess changes in anxiety-related and social behaviours, and neural alterations potentially underlying such changes, driven specifically by Aβ accumulation. AppNL-G-F knock-in mice exhibited subtle deficits in tasks assessing social olfaction, but not in social motivation tasks. In anxiety-assessing tasks, AppNL-G-F knock-in mice exhibited: (1) increased thigmotaxis in the open field (OF), yet; (2) reduced closed-arm, and increased open-arm, time in the elevated plus maze (EPM). Their ostensibly anxiogenic OF profile, yet ostensibly anxiolytic EPM profile, could hint at altered cortical mechanisms affecting decision-making (e.g. 'disinhibition'), rather than simple core deficits in emotional motivation. Consistent with this possibility, alterations in microstructure, glutamatergic-dependent gamma oscillations and glutamatergic gene expression were all observed in the prefrontal cortex, but not the amygdala, of AppNL-G-F knock-in mice. Thus, insoluble Aβ overexpression drives prefrontal cortical alterations, potentially underlying changes in social and anxiety-related behavioural tasks.This article has an associated First Person interview with the first author of the paper.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。