CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis

CD19 和 POU2AF1 是与 COPD 肺气肿相关的潜在免疫相关生物标志物:基于多项微阵列分析

阅读:2
作者:Da-Wei Zhang # ,Jing-Jing Ye # ,Ying Sun ,Shuang Ji ,Jia-Ying Kang ,Yuan-Yuan Wei ,Guang-He Fei

Abstract

Purpose: Emphysema is the main cause of the progression of chronic obstructive pulmonary disease (COPD). This study aimed to identify the key genes involved in COPD-related emphysema. Patients and methods: GSE76925 was downloaded from Gene Expression Omnibus database. Protein-protein interaction networks of differentially expressed genes (DEGs) between control and COPD groups were constructed to identify hub genes using Cytoscape. Diagnostic performance of hub genes was evaluated using receiver operating characteristic analysis. Correlation analysis was performed to identify the key genes by analyzing the relationship between the hub genes and lung function and computed tomography (CT) indexes of emphysema. COPD patients were then divided into two groups based on the median expression of key genes and DEGs between these two groups were identified. Enrichment analysis of DEGs and correlation analysis between key genes and the infiltration of the immune cells were also analyzed. Finally, the role of key genes was evaluated in a lung tissues dataset (GSE47460) and a blood dataset (GSE76705). Additionally, the expression of key genes was validated by quantitative real-time polymerase chain reaction and immunohistochemistry. Results: CD19 and POU2AF1 had diagnostic efficacy for COPD and were significantly correlated with lung function and CT indexes of emphysema. Enrichment and immune analyses revealed that CD19 and POU2AF1 were correlated with the B cells in COPD. These results were consistent in GSE47460. The expression of CD19 and POU2AF1 in blood was the opposite of that in lung tissues, and CD19 and POU2AF1 were both significantly upregulated in COPD lung tissues at both the mRNA and protein levels. Conclusion: CD19 and POU2AF1 may serve as key regulators of emphysema and contribute to the progression of COPD by regulating the B-cell immunology. Targeting B cells may be a promising strategy for treating COPD. Keywords: B cell; bioinformatics analysis; chronic obstructive pulmonary disease; emphysema.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。