Advanced glycation end product (AGE) targeting antibody SIWA318H is efficacious in preclinical models for pancreatic cancer

晚期糖基化终产物 (AGE) 靶向抗体 SIWA318H 在胰腺癌临床前模型中有效

阅读:6
作者:Gabriela R Rossi, Ashley Jensen, Serina Ng, Zhirong Yin, Aimin Li, Anjan Misra, Daniel D Von Hoff, Lewis Gruber, Misty Gruber, Haiyong Han

Abstract

SIWA318H is a novel monoclonal antibody that selectively targets an advanced glycation end product biomarker found in damaged/dysfunctional cells exhibiting (a) aerobic glycolysis, and (b) oxidative stress. Cells with this biomarker are dysfunctional and are associated with stresses and/or damages relating to aging, cancer and other disease processes. In this study, we evaluated the biological effects and antitumor activity of SIWA318H in preclinical models for pancreatic cancer. SIWA318H binds to pancreatic cancer cells and cancer-associated fibroblasts, as well as tumor xenografts derived from pancreatic cancer patients. Furthermore, SIWA318H induced significant antibody-dependent cell-mediated cytotoxicity (ADCC) against pancreatic cancer cells. In a humanized CD34+ NSG mouse xenograft model for pancreatic cancer, tumors in mice treated with SIWA318H grew significantly slower compared to those in control mice (p < 0.001). After 3 weeks of treatment with SIWA318H, the tumor growth was suppressed by 68.8% and 61.5% for the high and low dose regimens, respectively, when compared to the isotype antibody control (ANOVA p < 0.002). Moreover, a significant increase in complete remission (CR) rate was observed in mice receiving the high dose (60%, p < 0.04) or low dose (77.8%, p < 0.02) of SIWA318H treatment compared with control mice (6.7%). Immunohistochemical analyses of the tumor tissues showed a significant decrease in senescent cells in the tumor microenvironment of SIWA318H treated mice compared to that of control treated mice (p < 0.05). These results provide compelling evidence that SIWA318H is a promising novel therapeutic against pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。