Development of heart failure with preserved ejection fraction in type 2 diabetic mice is ameliorated by preserving vascular function

保护血管功能可改善2型糖尿病小鼠射血分数保留型心力衰竭的发生发展。

阅读:1
作者:Mandy Otto ,Laura Brabenec ,Melanie Müller ,Sebastian Kintrup ,Katharina E M Hellenthal ,Richard Holtmeier ,Sophie Charlotte Steinbuch ,Ole Sönken Karsten ,Heorhii Pryvalov ,Jan Rossaint ,Eric R Gross ,Nana-Maria Wagner

Abstract

Aims: Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction and is frequent in people with type 2 diabetes mellitus. In diabetic patients, increased levels of the eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE) are linked to vascular dysfunction. Here, we aimed to identify the importance of 12-HETE in type 2 diabetic patients exhibiting diastolic dysfunction, and mice exhibiting HFpEF and whether targeting 12-HETE is a means to ameliorate HFpEF progression by improving vascular function in diabetes. Material and methods: Subjects with diagnosed type 2 diabetes mellitus and reported diastolic dysfunction or healthy controls were recruited and 12(S)-HETE levels determined by ELISA. 12(S)-HETE levels were determined in type 2 diabetic, leptin receptor deficient mice (LepRdb/db) and HFpEF verified by echocardiography. Mitochondrial function, endothelial function and capillary density were assessed using Seahorse technique, pressure myography and immunohistochemistry in LepRdb/db or non-diabetic littermate controls. 12/15Lo generation was inhibited using ML351 and 12(S)-HETE action by using the V1-cal peptide. Key findings: Endothelium-dependent vasodilation and mitochondrial functional capacity both improved in response to either application of ML351 or the V1-cal peptide. Correlating to improved vascular function, mice treated with either pharmacological agent exhibited improved diastolic filling and left ventricular relaxation that correlated with increased myocardial capillary density. Significance: Our results suggest that 12-HETE may serve as a biomarker indicating endothelial dysfunction and the resulting cardiovascular consequences such as HFpEF in type 2 diabetic patients. Antagonizing 12-HETE is a potent means to causally control HFpEF development and progression in type 2 diabetes by preserving vascular function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。