Specific vulnerability of iPSC-derived motor neurons with TDP-43 gene mutation to oxidative stress

具有 TDP-43 基因突变的 iPSC 衍生运动神经元对氧化应激的特定脆弱性

阅读:5
作者:Asako Onda-Ohto, Minami Hasegawa-Ogawa, Hiromasa Matsuno, Tomotaka Shiraishi, Keiko Bono, Hiromi Hiraki, Yumi Kanegae, Yasuyuki Iguchi, Hirotaka James Okano

Abstract

Amyotrophic lateral sclerosis (ALS) is a disease that affects motor neurons and has a poor prognosis. We focused on TAR DNA-binding protein 43 kDa (TDP-43), which is a common component of neuronal inclusions in many ALS patients. To analyze the contribution of TDP-43 mutations to ALS in human cells, we first introduced TDP-43 mutations into healthy human iPSCs using CRISPR/Cas9 gene editing technology, induced the differentiation of these cells into motor and sensory neurons, and analyzed factors that are assumed to be altered in or associated with ALS (cell morphology, TDP-43 localization and aggregate formation, cell death, TDP-43 splicing function, etc.). We aimed to clarify the pathological alterations caused solely by TDP-43 mutation, i.e., the changes in human iPSC-derived neurons with TDP-43 mutation compared with those with the same genetic background except TDP-43 mutation. Oxidative stress induced by hydrogen peroxide administration caused the death of TDP-43 mutant-expressing motor neurons but not in sensory neurons, indicating the specific vulnerability of human iPSC-derived motor neurons with TDP-43 mutation to oxidative stress. In our model, we observed aggregate formation in a small fraction of TDP-43 mutant-expressing motor neurons, suggesting that aggregate formation seems to be related to ALS pathology but not the direct cause of cell death. This study provides basic knowledge for elucidating the pathogenesis of ALS and developing treatments for the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。