Nanoparticle vaccines can be designed to induce pDC support of mDCs for increased antigen display

纳米颗粒疫苗可被设计成诱导浆细胞样树突状细胞(pDC)支持髓系树突状细胞(mDC)以增强抗原呈递。

阅读:2
作者:Nina Butkovich ,Jo Anne Tucker ,Aaron Ramirez ,Enya Li ,Vijaykumar S Meli ,Edward L Nelson ,Szu-Wen Wang

Abstract

Cancer vaccine immunotherapy facilitates the immune system's recognition of tumor-associated antigens, and the biomolecular design of these vaccines using nanoparticles is one important approach towards obtaining strong anti-tumor responses. Following activation of dendritic cells (DCs), a robust CD8+ T cell-mediated adaptive immune response is critical for tumor elimination. While the role of efficient antigen-presenting myeloid DCs (mDCs) is conventionally attributed towards vaccine efficacy, participation by highly cytokine-producing plasmacytoid DCs (pDCs) is less understood and is often overlooked. We examined vaccines based on the E2 protein nanoparticle platform that delivered encapsulated TLR9 agonist bacterial-like DNA (CpG1826 or CpG1018) or TLR7 agonist viral ssRNA to determine their efficacy over free agonists in activating both mDCs and pDCs for antigen presentation. Although mDCs were only activated by nanoparticle-encapsulated TLR9 agonists, pDCs were activated by all the individually tested constructs, and CpG1826 was shown to induce pDC cytokine production. Transfer of secreted factors from pDCs that were stimulated with a vaccine formulation comprising peptide antigen and CpG1826 enhanced mDC display of the antigen, particularly when delivered in nanoparticles. Only when treated with nanoparticle-conjugated vaccine could pDCs secrete factors to induce antigen display on naïve mDCs. These results reveal that pDCs can aid mDCs, highlighting the importance of activating both pDCs and mDCs in designing effective cancer vaccines, and demonstrate the advantage of using nanoparticle-based vaccine delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。