Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis

克服NRF2的补偿性升高使肝细胞癌细胞更容易受到双硫仑/铜诱导的铁死亡

阅读:5
作者:Xueying Ren, Yanchun Li, Yi Zhou, Wanye Hu, Chen Yang, Qiangan Jing, Chaoting Zhou, Xu Wang, Jiayu Hu, Luyang Wang, Jing Yang, Hairui Wang, Haifeng Xu, Huanjuan Li, Xiangmin Tong, Ying Wang, Jing Du

Abstract

Hepatocellular carcinoma (HCC) is one of the paramount causes of cancer-related death worldwide. Despite recent advances have been made in clinical treatments of HCC, the general prognosis of patients remains poor. Therefore, it is imperative to develop a less toxic and more effective therapeutic strategy. Currently, series of cellular, molecular, and pharmacological experimental approaches were utilized to address the unrecognized characteristics of disulfiram (DSF), pursuing the goal of repurposing DSF for cancer therapy. We found that DSF/Cu selectively exerted an efficient cytotoxic effect on HCC cell lines, and potently inhibited migration, invasion, and angiogenesis of HCC cells. Importantly, we confirmed that DSF/Cu could intensively impair mitochondrial homeostasis, increase free iron pool, enhance lipid peroxidation, and eventually result in ferroptotic cell death. Of note, a compensatory elevation of NRF2 accompanies the process of ferroptosis, and contributes to the resistance to DSF/Cu. Mechanically, we found that DSF/Cu dramatically activated the phosphorylation of p62, which facilitates competitive binding of Keap1, thus prolonging the half-life of NRF2. Notably, inhibition of NRF2 expression via RNA interference or pharmacological inhibitors significantly facilitated the accumulation of lipid peroxidation, and rendered HCC cells more sensitive to DSF/Cu induced ferroptosis. Conversely, fostering NRF2 expression was capable of ameliorating the cell death activated by DSF/Cu. Additionally, DSF/Cu could strengthen the cytotoxicity of sorafenib, and arrest tumor growth both in vitro and in vivo, by simultaneously inhibiting the signal pathway of NRF2 and MAPK kinase. In summary, these results provide experimental evidence that inhibition of the compensatory NRF2 elevation strengthens HCC cells more vulnerable to DSF/Cu induced ferroptosis, which facilitates the synergistic cytotoxicity of DSF/Cu and sorafenib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。