Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery

常温机器灌注过程中脂质代谢的操纵:脱脂疗法对供体肝功能恢复的影响

阅读:5
作者:Yuri L Boteon, Joseph Attard, Amanda P C S Boteon, Lorraine Wallace, Gary Reynolds, Stefan Hubscher, Darius F Mirza, Hynek Mergental, Ricky H Bhogal, Simon C Afford

Abstract

Strategies to increase the use of steatotic donor livers are required to tackle the mortality on the transplant waiting list. We aimed to test the efficacy of pharmacological enhancement of the lipid metabolism of human livers during ex situ normothermic machine perfusion to promote defatting and improve the functional recovery of the organs. Because of steatosis, 10 livers were discarded and were allocated either to a defatting group that had the perfusate supplemented with a combination of drugs to enhance lipid metabolism or to a control group that received perfusion fluid with vehicle only. Steatosis was assessed using tissue homogenate and histological analyses. Markers for lipid oxidation and solubilization, oxidative injury, inflammation, and biliary function were evaluated by enzyme-linked immunosorbent assay, immunohistochemistry, and in-gel protein detection. Treatment reduced tissue triglycerides by 38% and macrovesicular steatosis by 40% over 6 hours. This effect was driven by increased solubility of the triglycerides (P = 0.04), and mitochondrial oxidation as assessed by increased ketogenesis (P = 0.008) and adenosine triphosphate synthesis (P = 0.01) were associated with increased levels of the enzymes acyl-coenzyme A oxidase 1, carnitine palmitoyltransferase 1A, and acetyl-coenzyme A synthetase. Concomitantly, defatted livers exhibited enhanced metabolic functional parameters such as urea production (P = 0.03), lower vascular resistance, lower release of alanine aminotransferase (P = 0.049), and higher bile production (P = 0.008) with a higher bile pH (P = 0.03). The treatment down-regulated the expression of markers for oxidative injury as well as activation of immune cells (CD14; CD11b) and reduced the release of inflammatory cytokines in the perfusate (tumor necrosis factor α; interleukin 1β). In conclusion, pharmacological enhancement of intracellular lipid metabolism during normothermic machine perfusion decreased the lipid content of human livers within 6 hours. It also improved the intracellular metabolic support to the organs, leading to successful functional recovery and decreased expression of markers of reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。