TSPAN1 silencing protects against cerulein-induced pancreatic acinar cell injury via targeting AGR2

TSPAN1 沉默可通过靶向 AGR2 来防止 cerulein 诱导的胰腺腺泡细胞损伤

阅读:6
作者:Jing Wang, Jing Huang, Lili Huang

Abstract

Acute pancreatitis (AP) is an inflammatory gastrointestinal disorder affecting the pancreas. Previous study reported that tetraspanin 1 (TSPAN1) expression was significantly upregulated in the pancreas of AP patients. However, the underlying molecular mechanism of TSPAN1 in the pathogenesis of AP remains unclear. Thus, the aim of the present study was to investigate the potential role of TSPAN1 in development of AP. RT-qPCR was carried out to quantify the relative mRNA levels of TSPAN1 and anterior gradient-2 (AGR2). The CCK-8 assay was used to detect the cell viability. The TUNEL assay was performed to visualize the apoptotic cells. Western blot was performed to determine the expressions of proteins related to endoplasmic reticulum (ER) stress and apoptosis. ELISA kits were adopted to detect the concentration of inflammatory cytokines including TNF-α and IL-6. Finally, immunoprecipitation (IP) was used to verify the interaction between TSPAN1 and AGR2. TSPAN1 was upregulated in serum of AP patients and AP cell models. TSPAN1 silencing promoted the cell proliferation and inhibited inflammatory response in cerulein-induced AR42J cells. Moreover, TSPAN1 induced endoplasmic reticulum stress by binding AGR2. Interestingly, the overexpression of AGR2 abolished the effects of TSPAN1 silencing on cell proliferation and inflammatory response in cerulein-induced AR42J cells. In summary, TSPAN1 silencing protects against cerulein-induced pancreatic acinar cell injury through inhibiting ER stress-mediated by AGR2. Hence, TSPAN1 may serve as a promising therapeutic target for AP treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。