Modulating temporal control of NF-kappaB activation: implications for therapeutic and assay selection

调节 NF-κB 激活的时间控制:对治疗和检测选择的意义

阅读:4
作者:David J Klinke 2nd, Irina V Ustyugova, Kathleen M Brundage, John B Barnett

Abstract

The activation of transcription factor NF-kappaB (nuclear factor-kappaB) plays a central role in the induction of many inflammatory response genes. This process is characterized by either oscillations or stable induction of NF-kappaB nuclear binding. Changes in dynamics of binding result in the expression of distinct subsets of genes leading to different physiological outcomes. We examined NF-kappaB DNA binding activity in lipopolysaccharide (LPS)-stimulated IC-21 cells by electromobility shift assay and nonradioactive transcription factor assay and interpreted the results using a kinetic model of NF-kappaB activation. Both assays detected damped oscillatory behavior of NF-kappaB with differences in sensitivity and reproducibility. 3,4-Dichloropropionaniline (DCPA) was used to modulate the oscillatory behavior of NF-kappaB after LPS stimulation. DCPA is known to inhibit the production of two NF-kappaB-inducible cytokines, IL-6 and tumor necrosis factor alpha, by reducing but not completely abrogating NF-kappaB-induced transcription. DCPA treatment resulted in a potentiation of early LPS-induced NF-kappaB activation. The nonradioactive transcription factor assay, which has a higher signal/noise ratio than the electromobility shift assay, combined with in silico modeling, produced results that revealed changes in NF-kappaB dynamics which, to the best of our knowledge, have never been previously reported. These results highlight the importance of cell type and stimulus specificity in transcription factor activity assessment. In addition, assay selection has important implications for network inference and drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。