Time-resolved FTIR difference spectroscopy in combination with specific isotope labeling for the study of A1, the secondary electron acceptor in photosystem 1

时间分辨 FTIR 差异光谱法结合特定同位素标记研究光系统 1 中的次级电子受体 A1

阅读:5
作者:Gary Hastings, K M Priyangika Bandaranayake, Enrique Carrion

Abstract

A phylloquinone molecule (2-methyl, 3-phytyl, 1, 4-naphthoquinone) occupies the A(1) binding site in photosystem 1 particles from Synechocystis sp. 6803. In menB mutant photosystem 1 particles from the same species, plastoquinone-9 occupies the A(1) binding site. By incubation of menB mutant photosystem 1 particles in the presence of phylloquinone, it was shown in another study that phylloquinone will displace plastoquinone-9 in the A(1) binding site. We describe the reconstitution of unlabeled ((16)O) and (18)O-labeled phylloquinone back into the A(1) binding site in menB photosystem 1 particles. We then produce time-resolved A(1)(-)/A(1) Fourier transform infrared (FTIR) difference spectra for these menB photosystem 1 particles that contain unlabeled and (18)O-labeled phylloquinone. By specifically labeling only the phylloquinone oxygen atoms we are able to identify bands in A(1)(-)/A(1) FTIR difference spectra that are due to the carbonyl (C=O) modes of neutral and reduced phylloquinone. A positive band at 1494 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum is found to downshift 14 cm(-1) and decreases in intensity on (18)O labeling. Vibrational mode frequency calculations predict that an antisymmetric vibration of both C=O groups of the phylloquinone anion should display exactly this behavior. In addition, phylloquinone that has asymmetrically hydrogen bonded carbonyl groups is also predicted to display this behavior. The positive band at 1494 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum is therefore due to the antisymmetric vibration of both C=O groups of one electron reduced phylloquinone. Part of a negative band at 1654 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum downshifts 28 cm(-1) on (18)O labeling. Again, vibrational mode frequency calculations predict this behavior for a C=O mode of neutral phylloquinone. The negative band at 1654 cm(-1) in the A(1)(-)/A(1) FTIR difference spectrum is therefore due to a C=O mode of neutral phylloquinone. More specifically, calculations on a phylloquinone model molecule with the C(4)=O group hydrogen bonded predict that the 1654 cm(-1) band is due to the non hydrogen bonded C(1)=O mode of neutral phylloquinone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。