Pathogenic and Commensal Gut Bacteria Harboring Glycerol/Diol Dehydratase Metabolize Glycerol and Produce DNA-Reactive Acrolein

含有甘油/二醇脱水酶的致病和共生肠道细菌代谢甘油并产生 DNA 反应性丙烯醛

阅读:5
作者:Alejandro Ramirez Garcia, Katherine Hurley, Giovanni Marastoni, Médéric Diard, Sophie Hofer, Anna Greppi, Wolf-Dietrich Hardt, Christophe Lacroix, Shana J Sturla, Clarissa Schwab

Abstract

Bacteria harboring glycerol/diol dehydratase (GDH) encoded by the genes pduCDE metabolize glycerol and release acrolein during growth. Acrolein has antimicrobial activity, and exposure of human cells to acrolein gives rise to toxic and mutagenic responses. These biological responses are related to acrolein's high reactivity as a chemical electrophile that can covalently bind to cellular nucleophiles including DNA and proteins. Various food microbes and gut commensals transform glycerol to acrolein, but there is no direct evidence available for bacterial glycerol metabolism giving rise to DNA adducts. Moreover, it is unknown whether pathogens, such as Salmonella Typhymurium, catalyze this transformation. We assessed, therefore, acrolein formation by four GDH-competent strains of S. Typhymurium grown under either aerobic or anaerobic conditions in the presence of 50 mM glycerol. On the basis of analytical derivatization with a heterocyclic amine, all wild-type strains were observed to produce acrolein, but to different extents, and acrolein production was not detected in fermentations of a pduC-deficient mutant strain. Furthermore, we found that, in the presence of calf thymus DNA, acrolein-DNA adducts were formed as a result of bacterial glycerol metabolism by two strains of Limosilactobacillus reuteri, but not a pduCDE mutant strain. The quantification of the resulting adducts with increasing levels of glycerol up to 600 mM led to the production of up to 1.5 mM acrolein and 3600 acrolein-DNA adducts per 108 nucleosides in a model system. These results suggest that GDH-competent food microbes, gut commensals, and pathogens alike have the capacity to produce acrolein from glycerol. Further, the acrolein production can lead to DNA adduct formation, but requires high glycerol concentrations that are not available in the human gut.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。