High-fat diet prevents the development of autoimmune diabetes in NOD mice

高脂饮食可预防NOD小鼠自身免疫性糖尿病的发生

阅读:1
作者:Amy L Clark ,Zihan Yan ,Sophia X Chen ,Victoria Shi ,Devesha H Kulkarni ,Abhinav Diwan ,Maria S Remedi

Abstract

Aims: Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. Materials and methods: Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. Results: At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. Conclusions: This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。