Nucleolar dynamics are determined by the ordered assembly of the ribosome

核仁动力学由核糖体的有序组装决定

阅读:6
作者:Jessica Sheu-Gruttadauria, Xiaowei Yan, Nico Stuurman, Stephen N Floor, Ronald D Vale

Abstract

Ribosome biogenesis is coordinated within the nucleolus, a biomolecular condensate that exhibits dynamic material properties that are thought to be important for nucleolar function. However, the relationship between ribosome assembly and nucleolar dynamics is not clear. Here, we screened 364 genes involved in ribosome biogenesis and RNA metabolism for their impact on dynamics of the nucleolus, as measured by automated, high-throughput fluorescence recovery after photobleaching (FRAP) of the nucleolar scaffold protein NPM1. This screen revealed that gene knockdowns that caused accumulation of early rRNA intermediates were associated with nucleolar rigidification, while accumulation of late intermediates led to increased fluidity. These shifts in dynamics were accompanied by distinct changes in nucleolar morphology. We also found that genes involved in mRNA processing impact nucleolar dynamics, revealing connections between ribosome biogenesis and other RNA processing pathways. Together, this work defines mechanistic ties between ribosome assembly and the biophysical features of the nucleolus, while establishing a toolbox for understanding how molecular dynamics impact function across other biomolecular condensates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。