Physiologic Doses of TGF-β Improve the Composition of Engineered Articular Cartilage

生理剂量的 TGF-β 可改善工程关节软骨的组成

阅读:7
作者:Tianbai Wang, Sedat Dogru, Zhonghao Dai, Sung Yeon Kim, Nicholas A Vickers, Michael B Albro

Abstract

For cartilage regeneration applications, transforming growth factor beta (TGF-β) is conventionally administered at highly supraphysiologic doses (10-10,000 ng/mL) in an attempt to cue cells to fabricate neocartilage that matches the composition, structure, and functional properties of native hyaline cartilage. While supraphysiologic doses enhance ECM biosynthesis, they are also associated with inducing detrimental tissue features, such as fibrocartilage matrix deposition, pathologic-like chondrocyte clustering, and tissue swelling. Here we investigate the hypothesis that moderated TGF-β doses (0.1-1 ng/mL), akin to those present during physiological cartilage development, can improve neocartilage composition. Variable doses of media-supplemented TGF-β were administered to a model system of reduced-size cylindrical constructs (Ø2-Ø3 mm), which mitigate the TGF-β spatial gradients observed in conventional-size constructs (Ø4-Ø6 mm), allowing for a novel assessment of the intrinsic effect of TGF-β doses on macroscale neocartilage properties and composition. The administration of physiologic TGF-β to reduced-size constructs yields neocartilage with native-matched sGAG content and mechanical properties while providing a more hyaline cartilage-like composition, marked by: 1) reduced fibrocartilage-associated type I collagen, 2) 77% reduction in the fraction of cells present in a clustered morphology, and 3) 45% reduction in the degree of tissue swelling. Physiologic TGF-β appears to achieve an important balance of promoting requisite ECM biosynthesis, while mitigating hyaline cartilage compositional deficits. These results can guide the development of novel physiologic TGF-β-delivering scaffolds to improve the regeneration clinical-sized neocartilage tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。