Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant

氨基酸分解代谢突变体的代谢物分析揭示拟南芥种子代谢网络中的广泛联系

阅读:6
作者:Liping Gu, A Daniel Jones, Robert L Last

Abstract

An Arabidopsis thaliana mutant was identified as having increases in 12 of 20 free proteogenic amino acids in seeds. Because these metabolites are produced from multiple, seemingly unrelated biosynthetic networks, it was not possible to use a candidate gene approach to discover the enzyme defect responsible for this complex syndrome. Complementary metabolite profiling analyses revealed increased seed homomethionine and isovaleroyloxypropyl-glucosinolate, along with reduced 3-benzoyloxypropyl-glucosinolate. These data led to the discovery of impaired branched chain amino acid catabolic enzyme isovaleryl-CoA dehydrogenase (encoded by gene At3g45300 or atIVD) as the cause of this metabolic syndrome. These results indicate that catabolism plays an important role in regulating levels of branched chain amino acids in seeds. The diverse set of metabolites affected in the ivd1 mutants suggests the existence of a more complex network regulating seed amino acid accumulation than previously observed. This combined targeted and non-targeted metabolite profiling approach is broadly applicable to the characterization of metabolic mutants, human disease studies and crop germplasm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。