The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses

MuSK 激活剂 agrin 具有独立的作用,对于出生后神经肌肉突触的维持至关重要

阅读:6
作者:Tohru Tezuka, Akane Inoue, Taisuke Hoshi, Scott D Weatherbee, Robert W Burgess, Ryo Ueta, Yuji Yamanashi

Abstract

The motoneural control of skeletal muscle contraction requires the neuromuscular junction (NMJ), a midmuscle synapse between the motor nerve and myotube. The formation and maintenance of NMJs are orchestrated by the muscle-specific receptor tyrosine kinase (MuSK). Motor neuron-derived agrin activates MuSK via binding to MuSK's coreceptor Lrp4, and genetic defects in agrin underlie a congenital myasthenic syndrome (an NMJ disorder). However, MuSK-dependent postsynaptic differentiation of NMJs occurs in the absence of a motor neuron, indicating a need for nerve/agrin-independent MuSK activation. We previously identified the muscle protein Dok-7 as an essential activator of MuSK. Although NMJ formation requires agrin under physiological conditions, it is dispensable for NMJ formation experimentally in the absence of the neurotransmitter acetylcholine, which inhibits postsynaptic specialization. Thus, it was hypothesized that MuSK needs agrin together with Lrp4 and Dok-7 to achieve sufficient activation to surmount inhibition by acetylcholine. Here, we show that forced expression of Dok-7 in muscle enhanced MuSK activation in mice lacking agrin or Lrp4 and restored midmuscle NMJ formation in agrin-deficient mice, but not in Lrp4-deficient mice, probably due to the loss of Lrp4-dependent presynaptic differentiation. However, these NMJs in agrin-deficient mice rapidly disappeared after birth, and postsynaptic specializations emerged ectopically throughout myotubes whereas exogenous Dok-7-mediated MuSK activation was maintained. These findings demonstrate that the MuSK activator agrin plays another role essential for the postnatal maintenance, but not for embryonic formation, of NMJs and also for the postnatal, but not prenatal, midmuscle localization of postsynaptic specializations, providing physiological and pathophysiological insight into NMJ homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。