Adsorption of phosphate on iron oxide doped halloysite nanotubes

磷酸盐在氧化铁掺杂埃洛石纳米管上的吸附

阅读:5
作者:Dema A Almasri, Navid B Saleh, Muataz A Atieh, Gordon McKay, Said Ahzi

Abstract

Excess phosphate in water is known to cause eutrophication, and its removal is imperative. Nanoclay minerals are widely used in environmental remediation due to their low-cost, adequate availability, environmental compatibility, and adsorption efficiency. However, the removal of anions with nanoclays is not very effective because of electrostatic repulsion from clay surfaces with a net negative charge. Among clay minerals, halloysite nanotubes (HNTs) possess a negatively charged exterior and a positively charged inner lumen. This provides an increased affinity for anion removal. In this study, HNTs are modified with nano-scale iron oxide (Fe2O3) to enhance the adsorption capacity of the nanosorbent. This modification allowed for effective distribution of these oxide surfaces, which are known to sorb phosphate via ligand exchange and by forming inner-sphere complexes. A detailed characterization of the raw and (Fe2O3) modified HNTs (Fe-HNT) is conducted. Influences of Fe2O3 loading, adsorbent dosage, contact time, pH, initial phosphate concentration, and coexisting ions on the phosphate adsorption capacity are studied. Results demonstrate that adsorption on Fe-HNT is pH-dependent with fast initial adsorption kinetics. The underlying mechanism is identified as a combination of electrostatic attraction, ligand exchange, and Lewis acid-base interactions. The nanomaterial provides promising results for its application in water/wastewater treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。