Low‑intensity low‑frequency ultrasound enhances the chemosensitivity of gemcitabine‑resistant ASPC‑1 cells via PI3K/AKT/NF‑κB pathway‑mediated ABC transporters

低强度低频超声通过 PI3K/AKT/NF-κB 通路介导的 ABC 转运体增强吉西他滨耐药 ASPC-1 细胞的化学敏感性

阅读:5
作者:Fuqiang Qiu, Jifan Chen, Jing Cao, Feng Diao, Pintong Huang

Abstract

Tumor drug resistance (TDR) invariably leads to the failure of chemotherapy. In addition, current treatment strategies for TDR are not satisfactory due to limitations in terms of safety and feasibility. The aim of the present study was to determine whether low‑intensity low‑frequency ultrasound (LILFU) could improve the effect of chemotherapy and reverse TDR in gemcitabine‑resistant ASPC‑1 (ASPC‑1/GEM) cells. The investigation focused on the association between LILFU effectiveness and the adenosine triphosphate‑binding cassette (ABC) transporters and the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT)/nuclear factor (NF)‑κB signaling pathway. A Cell Counting Kit‑8 assay was used to determine the appropriate acoustic intensity, half‑maximal inhibitory concentration of gemcitabine (GEM) and the viability of ASPC‑1/GEM cells. ASPC‑1/GEM cells were divided into control, GEM, LILFU and GEM+LILFU groups. Cell proliferation was evaluated through colony formation assays, whereas cell apoptosis was detected using flow cytometry. Western blotting was used to explore the expression levels of ABC transporters and PI3K/AKT/NF‑κB signaling pathway‑associated proteins. Xenograft models in mice were established to identify the enhancing effect of GEM+LILFU in vivo. Immunohistochemistry was used to detect the expression levels of Ki‑67 in tumor tissues. The acoustic parameter of 0.2 W/cm2 and a GEM concentration of 6.63 mg/ml were used in subsequent experiments. Following treatment with GEM+LILFU, the cell viability and proliferation ability were decreased, whereas the apoptotic rate was increased compared with the GEM group. The expression levels of ABC transporters, PI3K‑P110α and NF‑κB were decreased in the GEM+LILFU group. Notably, LILFU increased the effectiveness of GEM in inhibiting tumor growth, and reduced the expression levels of Ki‑67 in the xenograft mouse model. LILFU improved the chemosensitivity of ASPC‑1/GEM cells via inhibition of cell viability and proliferation, and promoted cell apoptosis in the GEM+LILFU group. In conclusion, LILFU may downregulate the expression levels of ABC transporters by inhibiting the PI3K‑p110α/AKT/NF‑κB signaling pathway, thereby reversing resistance in pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。