RBBP9: a tumor-associated serine hydrolase activity required for pancreatic neoplasia

RBBP9:胰腺肿瘤所需的肿瘤相关丝氨酸水解酶活性

阅读:4
作者:David J Shields, Sherry Niessen, Eric A Murphy, Ainhoa Mielgo, Jay S Desgrosellier, Steven K M Lau, Leo A Barnes, Jacqueline Lesperance, Michael Bouvet, David Tarin, Benjamin F Cravatt, David A Cheresh

Abstract

Pancreatic cancer is one of the most lethal malignancies. To discover functionally relevant modulators of pancreatic neoplasia, we performed activity-based proteomic profiling on primary human ductal adenocarcinomas. Here, we identify retinoblastoma-binding protein 9 (RBBP9) as a tumor-associated serine hydrolase that displays elevated activity in pancreatic carcinomas. Whereas RBBP9 is expressed in normal and malignant tissues at similar levels, its elevated activity in tumor cells promotes anchorage-independent growth in vitro as well as pancreatic carcinogenesis in vivo. At the molecular level, RBBP9 activity overcomes TGF-beta-mediated antiproliferative signaling by reducing Smad2/3 phosphorylation, a previously unknown role for a serine hydrolase in cancer biology. Conversely, loss of endogenous RBBP9 or expression of mutationally inactive RBBP9 leads to elevated Smad2/3 phosphorylation, implicating this serine hydrolase as an essential suppressor of TGF-beta signaling. Finally, RBBP9-mediated suppression of TGF-beta signaling is required for E-cadherin expression as loss of the serine hydrolase activity leads to a reduction in E-cadherin levels and a concomitant decrease in the integrity of tumor cell-cell junctions. These data not only define a previously uncharacterized serine hydrolase activity associated with epithelial neoplasia, but also demonstrate the potential benefit of functional proteomics in the identification of new therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。