Efficacy of sertraline against Trypanosoma cruzi: an in vitro and in silico study

舍曲林对克氏锥虫的疗效:体外和计算机模拟研究

阅读:6
作者:Daiane Dias Ferreira, Juliana Tonini Mesquita, Thais Alves da Costa Silva, Maiara Maria Romanelli, Denise da Gama Jaen Batista, Cristiane França da Silva, Aline Nefertiti Silva da Gama, Bruno Junior Neves, Cleber Camilo Melo-Filho, Maria de Nazare Correia Soeiro, Carolina Horta Andrade, Andre Gustav

Background

Drug repurposing has been an interesting and cost-effective approach, especially for neglected diseases, such as Chagas disease.

Conclusions

The present study demonstrated that sertraline had a lethal effect on different forms and strains of T. cruzi, by affecting the bioenergetic metabolism of the parasite. These findings provide a starting point for future experimental assays and may contribute to the development of new compounds.

Methods

In this work, we studied the activity of the antidepressant drug sertraline against Trypanosoma cruzi trypomastigotes and intracellular amastigotes of the Y and Tulahuen strains, and investigated its action mode using cell biology and in silico approaches.

Results

Sertraline demonstrated in vitro efficacy against intracellular amastigotes of both T. cruzi strains inside different host cells, including cardiomyocytes, with IC50 values between 1 to 10 μM, and activity against bloodstream trypomastigotes, with IC50 of 14 μM. Considering the mammalian cytotoxicity, the drug resulted in a selectivity index of 17.8. Sertraline induced a change in the mitochondrial integrity of T. cruzi, resulting in a decrease in ATP levels, but not affecting reactive oxygen levels or plasma membrane permeability. In silico approaches using chemogenomic target fishing, homology modeling and molecular docking suggested the enzyme isocitrate dehydrogenase 2 of T. cruzi (TcIDH2) as a potential target for sertraline. Conclusions: The present study demonstrated that sertraline had a lethal effect on different forms and strains of T. cruzi, by affecting the bioenergetic metabolism of the parasite. These findings provide a starting point for future experimental assays and may contribute to the development of new compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。