A TRAIL-TL1A Paracrine Network Involving Adipocytes, Macrophages, and Lymphocytes Induces Adipose Tissue Dysfunction Downstream of E2F1 in Human Obesity

涉及脂肪细胞、巨噬细胞和淋巴细胞的 TRAIL-TL1A 旁分泌网络在人类肥胖中诱导 E2F1 下游的脂肪组织功能障碍

阅读:9
作者:Nitzan Maixner, Tal Pecht, Yulia Haim, Vered Chalifa-Caspi, Nir Goldstein, Tania Tarnovscki, Idit F Liberty, Boris Kirshtein, Rachel Golan, Omer Berner, Alon Monsonego, Nava Bashan, Matthias Blüher, Assaf Rudich

Abstract

Elevated expression of E2F1 in adipocyte fraction of human visceral adipose tissue (hVAT) associates with a poor cardiometabolic profile. We hypothesized that beyond directly activating autophagy and MAP3K5 (ASK)-MAP kinase signaling, E2F1 governs a distinct transcriptome that contributes to adipose tissue and metabolic dysfunction in obesity. We performed RNA sequencing of hVAT samples from age-, sex-, and BMI-matched patients, all obese, whose visceral E2F1 protein expression was either high (E2F1high) or low (E2F1low). Tumor necrosis factor superfamily (TNFSF) members, including TRAIL (TNFSF10), TL1A (TNFSF15), and their receptors, were enriched in E2F1high While TRAIL was equally expressed in adipocytes and stromal vascular fraction (SVF), TL1A was mainly expressed in SVF, and TRAIL-induced TL1A was attributed to CD4+ and CD8+ subclasses of hVAT T cells. In human adipocytes, TL1A enhanced basal and impaired insulin-inhibitable lipolysis and altered adipokine secretion, and in human macrophages it induced foam cell biogenesis and M1 polarization. Two independent human cohorts confirmed associations between TL1A and TRAIL expression in hVAT and higher leptin and IL6 serum concentrations, diabetes status, and hVAT-macrophage lipid content. Jointly, we propose an intra-adipose tissue E2F1-associated TNFSF paracrine loop engaging lymphocytes, macrophages, and adipocytes, ultimately contributing to adipose tissue dysfunction in obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。